

Driving a Greener Value Chain

i-HeCoBatt

Exploring the promise of silicon anodes

TITLE: Dr.

SPEAKER: Warda Hadouchi

Electromobility Technology Workshop Driving a Greener Value Chain

Development of electric vehicle \rightarrow need more autonomy at low cost

- Strong demand for innovation with major R&D efforts aiming at:
 - i. improving density (autonomy)
 - ii. improving lifetime
- Technical improvements have mainly taken place on the cathode material so far
- Industry research efforts currently cast on improving capacity using silicon instead of graphite, multiplying energy storage

Electromobility Technology Workshop Driving a Greener Value Chain

'\\/_i-HeCoBatt

- → material decohesion , cracking and decripitation
- → loss of electronic connectivity and mechanical integrity
- SEI

Valencia (Spain)

- → gradual electrolyte and lithium consumption
- →Inherent non-passivating behaviour

Driving a Greener Value Chain

Silicon anode on the market

Due to capacity losses

→ Limitation of SiO_x content in commercial cells (1-5%)

Samsung SDI^(a):

- INR18650-32E (100% Gr) → 238 Wh/kg
- INR18650-35E (1,5% SiOx) → 250 Wh/kg

LG Chem(b)

INR18650 MJ1 (3% SiOx) → 260 Wh/kg

∠ Energy density → ∠ Si content in anode

Solving the cracking and SEI instability issues are **key enablers** for the **commercialization** of **new generation** Li-ion **batteries**: **Si/C composite**

(a) Kuntz et al. Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging. Batteries 2021, 7 (3), 48.

(b) Li et al. Degradation Mechanisms of High Capacity 18650 Cells Containing Si-Graphite Anode and Nickel-Rich NMC Cathode. Electrochimica Acta 2019, 297, 1109–1120.

Modelization: influence of silicon content in the anode

Modelization: influence of silicon content in the anode

- Mass and thickness \ when wt.%Si/anode /
- For wt.%Si > 30 %, impact of Si content not interesting

Driving a Greener Value Chain

Silicon nanoparticles synthesis by industrial process: Laser pyrolysis

Reagents: SiH₄, puis C₂H₂

- **Good size distribution**
- Crystalline Si nanoparticles (ø=40 nm)
- Low oxygen content (< 5 wt.%)

Sample TEM picture

TEM / HRTEM ANALYSIS

Uniform carbon coating = 1 - 2 nm

Strict crystal growth

Customizable

Carbon shell:

- protects Si from direct electrolyte exposure,
- favors the creation of a stable SEI layer, and
- improves the affinity of Si with most graphites and binders (CMC, PAA...).

Driving a Greener Value Chain

- Is not industrial process
- Development of formulation and guidelines for customer

EDX /TEM

Good distribution of Si in the carbon matrix

Good process reproducibility

Driving a Greener Value Chain

Influence of different Si/C composite grade on electrochemistry performances

Composite: 7wt% Si/93 wt% coke

	ICE (%)
NMSiΩC - 40 nm	83
Si plasma - 88 nm	86
µm si	72
SiOx	76

- Half cell: Si/C vs. Li [10 mV and 1.5 V]
- First cycle at C/20 then C/5
- Electrolyte: 1M LiPF₆ EC:PC:DMC (1:1:3)
 + 1 wt% VC and 5 wt% FEC
- Formulation: 80/2,5/2,5/15

composite/VGCF/C₄₅/CMC

- ▶ Best performances for NMSiΩC-40 nm (capacity and retention)
 → C-coating and particles size reduce cracking and SEI formation
- Good stability for SiOx but low capacity

Electromobility Technology Workshop Driving a Greener Value Chain

Presence of Graphite in Silicon anode

- Composite: "
- Si Ω C/Coke \rightarrow 12 wt.% / 88 wt.%
- Si Ω C/Coke/Gr \rightarrow 12 wt.% / 28 wt.% / 60 wt.%
- Half cell: Si/C vs. Li [10 mV and 1.5 V]
- First cycle at C/20 then C/5
- Electrolyte: 1M LiPF₆ EC:PC:DMC (1:1:3)
 + 1 wt% VC and 5 wt% FEC
- Formulation: 80/2,5/2,5/15 composite/VGCF/C₄₅/CMC

- Addition of Gr in the composite / ICE, capacity and improve the retention
- Carbon matrix protects Si from direct contact with electrolyte and accommodates volume expansion

Silicon content increase is possible by considering two key factors:

- → The composition of the carbon matrix: important effect of the pitch on Si coating
- → An electrolyte more adapted to the chemistry of Silicon

(a) Gutierez et al. Towards a better understanding of the degradation mechanisms of Li-ion full cells using Si/C composites as anode. Journal of Power sources. 2022..

Driving a Greener Value Chain

Perspective: Nanomakers involved in Astrabat europeen project

All Solid State: Using NM $Si\Omega C$ as main anode material combining with solid electrolyte and NMC cathode to make All Solid-State Battery.

Interest:

- ➤ Stabilize the SEI → limit Li comsumption
- > Control silicon volume expansion
- Provide a safer system fo LiB
- Multiply speficic capacity

Thank you for your attention

For more question Contact: whadouchi@nanomakers.fr

