Electromobility Technology Workshop:

Driving a Greener Value Chain

 $17th - 18th$ May 2022 $\boxed{\odot}$ Valencia (Spain)

Exploring the promise of silicon anodes

TITLE: Dr. **ICNOMOREFS** SPEAKER: Warda Hadouchi

i-HeCoBatt

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824300

hosted by

Development of electric vehicle \rightarrow need more autonomy at low cost

by

 $\left\{\bigvee\limits_{i=1}^{N} i\right\}$ i-HeCoBatt

- **Example 13 Ferror Formal and Temand for innovation with major R&D efforts aiming at:**
	- **i. improving density** (autonomy)

 $17th$ – $18th$ May 2022 $\boxed{9}$ Valencia (Spain) $\boxed{3}$ www.ihecobatt.eu

- ii. improving **lifetime**
- **Technical improvements have mainly taken place on the cathode** material so far
- ▪Industry research efforts currently cast on **improving anode capacity** using **silicon** instead of graphite, multiplying energy storage

$\left\{\bigvee\limits_{i=1}^{N} i\right\}$ i-HeCoBatt

➢ **Large volume expansion during cycling +280 %**

by

 \rightarrow material decohesion, cracking and decripitation \rightarrow loss of electronic connectivity and mechanical integrity

➢ **SEI**

 $17th$ – $18th$ May 2022 $\boxed{9}$ Valencia (Spain) $\boxed{3}$ www.ihecobatt.eu

 \rightarrow gradual electrolyte and lithium consumption \rightarrow Inherent non-passivating behaviour

$\{\setminus\}$ i-HeCoBatt

by

Silicon anode on the market

Due to capacity losses

 \rightarrow Limitation of SiO_x content in commercial cells (1-5%)

Samsung SDI(a) :

- *INR18650-32E* (100% Gr) → 238 Wh/kg
- *INR18650-35E* (1,5% SiOx) → 250 Wh/kg

LG Chem(b)

• *INR18650 MJ1* (3% SiOx) → 260 Wh/kg

 $\overline{}$ Energy density \rightarrow $\overline{}$ Si content in anode

Solving the cracking and SEI instability issues are key enablers for the commercialization of new generation Li-ion batteries : Si/C composite

(a) Kuntz et al. Identification of Degradation Mechanisms by Post-Mortem Analysis for High Power and High Energy Commercial Li-Ion Cells after Electric Vehicle Aging. Batteries 2021, 7 (3), 48.

 $17th$ – $18th$ May 2022 $\lfloor \circ \rfloor$ Valencia (Spain) $\lfloor \circ \rfloor$ www.ihecobatt.eu

(b) Li et al. Degradation Mechanisms of High Capacity 18650 Cells Containing Si-Graphite Anode and Nickel-Rich NMC Cathode. Electrochimica Acta 2019, 297, 1109-1120.

by $\bigcup_{i=1}^{N}$ i-HeCoBatt

Modelization: influence of silicon content in the anode

 $17th$ – $18th$ May 2022 $\boxed{9}$ Valencia (Spain) $\boxed{3}$ www.ihecobatt.eu

$\left\{\bigvee\limits_{i=1}^{N}$ i-HeCoBatt

by

Modelization: influence of silicon content in the anode

➢ Mass and thickness when wt.%Si/anode

 \triangleright For wt.%Si > 30 %, impact of Si content not interesting

 $\left\{\begin{matrix} \text{I} \\ \text{I} \end{matrix}\right\}$ i-HeCoBatt

by

Silicon nanoparticles synthesis by industrial process: **Laser pyrolysis**

Laser pyrolysis Powder $CO₂$ laser

Reagents: SiH₄, puis C_2H_2

Uniform carbon coating $= 1 - 2$ nm

 $17th - 18th$ May 2022 $\left[\begin{array}{c} \circ \\ \circ \end{array} \right]$ Valencia (Spain) $\left[\begin{array}{c} \circ \\ \circ \end{array} \right]$ www.ihecobatt.eu

Carbon shell :

- 1. **protects Si** from direct **electrolyte** exposure,
- 2. **favors** the creation of a **stable SEI** layer, and
- 3. improves the **affinity of Si** with most **graphites** and **binders** (CMC, PAA…).

by $\left\{\bigvee\limits_{i=1}^{N}$ i-HeCoBatt

EDX /TEM

Si

C

Silicon/carbon composite synthesis by R&D process: **Thermal pyrolysis**

- Is not industrial process
- Development of formulation and guidelines for customer

Influence of different Si/C composite grade on electrochemistry performances

Composite: 7wt% Si/93 wt% coke

- Half cell: Si/C vs. Li [10 mV and 1.5 V]
- First cycle at C/20 then C/5
- Electrolyte: $1M$ LiPF₆ EC:PC:DMC (1:1:3) + 1 wt% VC and 5 wt% FEC
- Formulation: 80/2,5/2,5/15 composite/VGCF/C₄₅/CMC

- \triangleright Best performances for NMSiQC-40 nm (capacity and retention) \rightarrow C-coating and particles size reduce cracking and SEI formation
-
- \triangleright Good stability for SiOx but low capacity

by

 $\left\{\bigvee\limits_{i=1}^{N} i\right\}$ i-HeCoBatt

$\left\{\bigvee\limits_{i=1}^{N} i\right\}$ i-HeCoBatt

by

by $\left\{\bigvee\limits_{i=1}^{N} i\right\}$ i-HeCoBatt

Perspective: Nanomakers involved in Astrabat europeen project

All Solid State : Using NM SiΩC as main anode material combining with solid electrolyte and NMC cathode to make All Solid-State Battery.

Interest:

- \triangleright Stabilize the SEI \rightarrow limit Li comsumption
- \triangleright Control silicon volume expansion
- \triangleright Provide a safer system fo LiB
- \triangleright Multiply speficic capacity

Thank you for your attention

For more question Contact: whadouchi@nanomakers.fr

 $17th$ – $18th$ May 2022 $\boxed{9}$ Valencia (Spain) $\boxed{3}$ www.ihecobatt.eu

